
CISC859 Pattern Recognition, Winter 2019 
Assignment 2, due January 28 

 
 

Readings 
• DHS Chapter 2  

Section 2.1 was in the readings for assignment 1. Read the rest of DHS chapter 2, putting your focus on the 
topics needed to answer the assignment questions. Study Section 2.7 on Error Probabilities and Integrals, 
but skip all the other sections that are marked with a * (that’s 2.3.1, 2.3.2, 2.8. 2.10, 2.11, 2.12). 

• Course reader pages 17-34. Minimum risk classifier, normal density, estimating P(error) 
 

Bayes classifier 

1) Recall that in problem 8 of assignment 1 you applied Bayes classifier to specific densities like “uniform in the 
range 0 to 10”. Here generalize to densities “uniform in the range L1 to H1”. 
 

A two-class, single-feature problem has equal prior probabilities P(w1) = P(w2) = 1/2. The densities p(x | wi) are 
uniform, so we know that for i=1 and i=2: p(x | wi) =  1/(Hi - Li) for x in the interval [Li, Hi] 
  =  0  elsewhere 
 

For each case a) to d), do three things:  
(i) sketch the two functions p(x | wi) 
(ii) define an optimal classification strategy “Classify the sample as w1 if x is in the range <whatever>” 
(iii) compute P(error), the probability of classification error when using classification strategy (ii) 

 
 

a) L1 < H1 < L2 < H2  
 

b) L1 < L2 < H1 <H2 and    H1 - L1 = H2 - L2  
 

c) L1 < L2 < H1 <H2 and    H1 - L1 > H2 - L2  Check your work by setting L1=0 H1=10 L2=8 H2=13. This 
should give you the answer for assignment 1 problem 8d. 

 

d) L1 < L2 < H2 <H1 and  (by definition)  H1 - L1 > H2 - L2  
 

Check your P(error) expressions. Using various values of L1 H1 L2 H2, what are the minimum and maximum 
possible values of P(error) according to your expression? Clearly you made a mistake if your P(error) can be less 
than zero or larger than one. Actually, any P(error) > 0.5 indicates a mistake: the Bayes’ classifier is optimal and 
therefore outperforms the P(error)=0.5 attained by random guessing (recall problem 3 in assignment 1). 
 
 
2) Consider a two-class, single-feature problem with the following class densities.  Note that the first density is 
normal (bell-shaped curve) and the second one is uniform (rectangular shape). 
 

 p(x | w1) is Normal with mean µ1=0 and  s1
2 = 1 

p(x | w2) is uniform with mean µ2=2 and  s2
2 = 1/3  

 As you showed in assignment 1 problem 5(c): p(x | w2) is uniformly distributed in the range [1, 3] 
 

a) Sketch p(x | w1) and p(x | w2).  Sketch both functions on the same plot (as is done in Figure 2.1 of DHS), so that 
you can compare them. A rough sketch is fine. My intention is that you do this by hand, but you can use a plotting 
package if you prefer. 

 

b) Assume P(w1) = P(w2) = 1/2. State the classification strategy that minimizes classification error; describe the 
classification strategy in terms such as “classify as w1 when x is in the range <something>“. Also write an 
expression for P(error) for this decision rule.  Since there is no closed-form solution for integration of the Normal 
density, leave your answer in the form of an integral.  If you wish, you can look up the answer to the integral in a 
published table. 

 

c) Assume P(w1) = 3P(w2). State the classification strategy that minimizes classification error.  Write an expression 
for P(error) for this decision rule.   

 
 

 



Features for classifying shapes 

3) Consider the problem of recognizing 2D shapes in image data.  For simplicity, consider polygonal shapes where 
all edges are parallel to one of the coordinate axes, as in these examples. 

 
In many applications, rotation and scaling should not affect shape classification.  For example, consider a system 
that recognizes parts as they come down an assembly line. The system should be able to recognize the parts at any 
orientation.  (In a factory setting, scale invariance might not be needed, because we can control the distance from the 
camera to the assembly line.) In the above examples, shape 2 is a scaled version of shape 1, shape 6 is a scaled 
version of 4, shape 5 is a rotated version of 4. 
 
 

(a) The following feature is proposed:        Feature1 =   region_area
region_perimeter2   

  

Is Feature1 scale invariant?  In other words, if a polygon has Feature1 = F, then does a scaled version of that polygon 
also have Feature1 = F?  Briefly justify your answer. 
 

Is Feature1 rotation invariant?   
 

Is Feature1 sufficient for discriminating among all possible different shapes? If so, argue why. If not, give an 
example of two different shapes that have the same value for Feature1. 
 

(b) Propose one or two other features that are scale and/or rotation invariant.  Discuss their discrimination power. 
 

(c) Doing part (c) is optional; I encourage you to have a quick look at it. 
Is it possible to define one really powerful feature that can distinguish between all polygons?  To state the problem 
more precisely, assume that a polygon is defined by a sequence of vertex locations (xi, yi), where xi and yi are real 
numbers. The question is whether it is possible to define one real-valued feature that uniquely encodes a polygon. 
Here we are not concerned with shifting or scaling or rotation: two polygons are supposed to map to different feature 
values if they don’t have identical vertex locations. Can you find a way to define a real-valued feature F such that 

                          if polygon A is different from polygon B, then F(A) ≠ F(B) 

Alternatively, can you prove (or just informally argue) that such a feature F cannot be defined?  
Note that this result does not apply to computers. Computers cannot store real numbers: that would require an infinite amount of 
memory because real numbers have infinite precision. Our computers use floating-point numbers with finite precision. 
Note for students who like fractals: you can also try to answer this question for fractal polygons -- these have an infinite number 
of vertices. 
 
 

Nearest neighbor and Bayes classifiers in DHS toolbox 

4) Look at the document Introduction to the DHS toolbox available on the course website under Pattern Recognition 
Resources http://research.cs.queensu.ca/~blostein/859_DHS_Toolbox.pdf.  The third screenshot in this document 
shows the result of applying the Bayes' classifier and the 3-Nearest-Neighbour classifier to the clouds data set.   

(a) As shown in the screen shot, the error rate for the Bayes classifier is 0.1 (i.e. 10%), whereas the 3-Nearest-
Neighbour classifier has error rate 13% on the test set and 8.3% on the training set. So on the training set the 3NN 
classifier is outperforming Bayes. Can this be right??? Recall that the Bayes classifier is optimal when p(x | wi) and 
P(wi) are known correctly, and that is the case here. The clouds data is generated from p(x | wi) that are defined to be 
the sum of one or more Gaussians, and the Bayes’ classifier is given the correct formulas for  p(x | wi). 

(b) I mentioned in class that for a 1-Nearest-Neighbor classifier (often abbreviated to "nearest neighbor classifier"), 
the error rate on the training set is zero.  Describe why this happens. 
 
 



Analyzing the minimum-error-rate Bayes classsifier 

Problems 5 and 6 are from the DHS textbook. Working on these problems is a great way to deepen your 
understanding of the Bayes classifier. I know that these problems might take you a fair bit of time, and I will not put 
problems of this type on the exam. 
 
5) DHS page 68, problem 12.  
Unfortunately, different printings of the textbook have different page numbers.  So look for the problem statement 
that starts like this:  

 Let wmax(x) be the state of nature for which P(wmax|x) ≥ P(wi|x) for all i, i=1,...,c. 

Hint: Keep in mind that the value of the subscript "max" depends on x.  Get an intuitive understanding of the result 
that P(error)≤(c-1)/c.  The error rate for a classifier that uses random guessing is (c-1)/c.  Under what conditions 
would a Bayes’ classifier get such a high error rate? 
 
 

Reject option in minimum-risk Bayes classifier 

6) DHS page 68, problem 13. 
This problem statement starts like this: 

In many pattern classification problems one has the option either to assign the pattern to one of c classes, or 
to reject it as being unrecognizable. 

Hints: Find the risk for each action and pick the minimum risk.  It’s best to calculate the risk for actions 1..c (classify 
as class 1 to c) separately from the risk for action c+1 (reject). You can use the expression for risk given at the end 
of page 17 in the course reader.  The risk for action c+1 should end up equal to lr and the risk for actions 1 to c 
should be an expression that involves ls.  Compare these two expressions to see which one is smaller; this lets you 
derive the expression given in the problem statement: “1 - lr / ls”. 
 
 
 
 


